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differential invariant
MSC (2000): 58J45, 58J70

1 Introduction

With this paper we start a systematic study of differential invariants of Monge–Ampère

equations, with our objective being the classification problem, methods of integration,

and other applications. Complete proofs of the results announced in [16] are presented.

We are interested in the classical case of two independent variables. The Monge–Ampère
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equations merit special attention due to a large spectrum of various applications, first of

all, in differential geometry and mathematical physics. Moreover, they form a natural

testing area for new methods emerging in the modern theory of nonlinear PDE’s.

In spite of more than 200 years of history of Monge–Ampère equations and numerous

publications devoted to them, it would be an exaggeration to say that their nature is

well understood. An important success was establishing the existence and uniqueness

theorems by Lewy and others (see [3, 10] for local aspects and [22] for global ones). The

classical Monge integration method was modernized by Matsuda [17, 18] and Morimoto

[20], etc. Our interest in differential invariants is motivated not only by the classification

problem but, no less, by hopes that they could illuminate many aspects of the theory of

Monge–Ampère equations.

According to [24] (see also [1]) scalar differential invariants provide a key to solving

the classification problem for any kind of geometrical structures. In fact, geometrical

structures of a given type are classified by solutions of a naturally associated classifying

(differential) equation, which describes “family ties” connecting the corresponding scalar

differential invariants. More exactly, scalar differential invariants are smooth functions

on the classifying diffiety, which is the infinite prolongation of the classifying equation.

This diffiety generally has singularities and its singular strata classify those geometrical

structures that possess nontrivial symmetries. Each of these strata is also an infinitely

prolonged differential equation in a lesser number of independent variables. For instance,

homogeneous structures correspond to the zero-dimensional case. So the classification

problem consists of a complete description of all strata composing the classifying diffiety,

and therefore involves a complete symmetry analysis of the geometric structures under

consideration. The interested reader will find an illustration of the above said in [25]

where plane 3-webs, a rather simple geometrical structure, is considered.

The classification problem for Monge–Ampère equations dates back to Sophus Lie.

For modern proofs of Lie’s theorems, classification problems for various strata of Monge-

Ampère equations see, e.g., [6–9, 13–15, 21, 23] and references therein. Directly using the

geometry of jet bundles, in this paper we interpret a hyperbolic Monge–Ampère equation

as a pair of 2-dimensional, skew-orthogonal, non-lagrangian subdistributions of the con-

tact distribution on a 5-dimensional contact manifold. This pair of subdistributions was

considered by other authors from a different point of view. See, for instance, [12, 14, 19].

We look for more than just scalar differential invariants of Monge–Ampère equations

with respect to the group of contact transformations. Here, we limit ourself to the case

of generic hyperbolic equations, which is motivated by two reasons. First, the study of

singular strata very much benefits from the knowledge of the generic one. Second, for the

hyperbolic equations, differential invariants are more easily visible due to the existence

of bicharacteristics.

Differential invariants found in this paper give a solution of the classification problem

for generic hyperbolic equations. This solution requires substantial computer support in

the analysis of concrete cases and further work is necessary to improve its efficiency.

Differential invariants for elliptic and parabolic Monge–Ampère equations can be ob-
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tained more or less straightforwardly by following the approach developed in this paper.

This idea and the study of singular strata will be the subject of subsequent publications.

2 Preliminaries

Below, all manifolds and maps are supposed to be smooth. By [f ]kp , k = 0, 1, 2, . . . ,∞,

we denote the k-jet of a map f at a point p. R stands for the field of real numbers, and

R
n for the n-dimensional arithmetic space.

2.1 Jet bundles

Here we recall necessary definitions and facts about jet bundles, see [4, 5].

Let M be an n-dimensional manifold, E an n +m-dimensional manifold and

π : E −→ M .

a fiber bundle. By

πk : Jkπ →M , πk : [S]kp �→ p , k = 0, 1, 2, . . .

we denote the bundle of all k-jets of sections of π. For any l > m ≥ 0, the natural

projection is defined as

πl,m : J lπ → Jmπ , πl,m : [S]lp �→ [S]mp .

Any section S of π generates the section jkS of the bundle πk by the formula

jkS : p �→ [S]kp .

Put

LkS = Im jkS .

Let θk+1 be an arbitrary point of Jk+1π, θk = πk+1,k(θk+1), and Tθk
(Jkπ) the tangent

space to Jkπ at the point θk. Then θk+1 defines the subspace Kθk+1
⊂ Tθk

(Jkπ) by the

formula

Kθk+1
= Tθk

(LkS) .

Clearly, θk+1 is identified with Kθk+1
. It is easy to prove that

Tθk
(Jkπ) = Kθk+1

⊕ Tθk
(π−1

k (p)) . (1)

Consider all submanifolds of the form LkS containing θk. The subspace spanned by their

tangent spaces Tθk
(LkS) is denoted by C(θk) and it is called the Cartan plane at θk. The

distribution

Ck : θk �→ C(θk)

is called the Cartan distribution on Jkπ. The distribution Ck, k ≥ 1, can be defined as

the kernel of the Cartan form

Uk = pr2 ◦ (πk,k−1)∗ ,

where pr2 : Tθk−1
(Jk−1π) → Tθk−1

(π−1
k−1(p)) is the projection generated by direct sum

decomposition (1).
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2.2 The contact structure

Consider the trivial bundle

τ : R
2 × R −→ R

2 , τ : ( x, y, z ) �→ ( x, y ) .

By x, y, z, p = zx, q = zy, r = zxx, s = zxy, t = zyy we denote the standard coordinates

in J2τ .

The Cartan distribution C1 on J1τ is identical to the contact structure on J1τ . The

corresponding contact 1-form U1 has the canonical form

U1 = dz − p dx− q dy .

in the standard coordinates.

A diffeomorphism ϕ : J1τ → J1τ is called a contact transformation if it preserves the

Cartan distribution. Obviously, a diffeomorphism ϕ is a contact transformation iff there

exist a nowhere vanishing function λ such that

ϕ∗(U1) = λU1 .

Any contact transformation ϕ can be lifted to the diffeomorphism

ϕ(1)
τ : J2τ −→ J2τ

by the formula

ϕ(1)
τ : θ2 ≡ Kθ2 �→ ϕ∗(Kθ2) ≡ θ̃2 = ϕ(1)

τ (θ2) .

If ϕ is defined on an open set V ⊂ J1τ , then ϕ
(1)
τ is defined on an open, everywhere dense

subset of τ−1
2,1 (V ).

A vector field Z in J1τ is a contact vector field if its flow ϕt consists of contact

transformations. Clearly, Z is a contact vector field iff there exist a function λ such that

LZ(U1) = λU1 ,

where LZ is the Lie derivative with respect to Z.

There exists a natural one-to-one correspondence between the set of all contact vector

fields in J1τ and the set of all functions in J1τ . It is defined by the formula

Z �→ f = Z U1 .

The function f = Z U1 is called the generating function of the contact vector field Z.

The contact vector field Z corresponding to f is denoted by Zf . In standard coordinates,

the field Zf is given by the formula

Zf = −fp ∂
∂x

− fq
∂

∂y
+ (f − pfp − qfq)

∂

∂z
+ (fx + pfz)

∂

∂p
+ (fy + qfz)

∂

∂q
. (2)
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2.3 Operations over vector-valued forms

Let M be a smooth n-dimensional manifold, Λi(M) the C∞(M)-module of i-forms on

M and D(M) the C∞(M)-module of vector fields on M . Let α ∈ Λk(M), β ∈ Λr(M),

and X, Y ∈ D(M). Then the Frölicher–Nijenhuis bracket [[· , ·]] of the vector-valued forms

α⊗X and β ⊗ Y is defined by the formula

[[α⊗X, β ⊗ Y ]] = α ∧ β ⊗ [
X, Y

]
+ α ∧X(β) ⊗ Y − Y (α) ∧ β ⊗X

+ (−1)kdα ∧ (X β) ⊗ Y − (−1)k(Y α) ∧ dβ ⊗X ,

see [2].

The contraction of forms α⊗X and β ⊗ Y is defined by the formula

(α⊗X) (β ⊗ Y ) = α ∧ (X β) ⊗ Y .

2.4 Projectors and their curvatures

The following simple construction allows one to associate a vector valued 2-form with a

projector. Namely, let P,Q ∈ D(M) be endomorphisms of the C∞(M)-module D(M)

such that QP = 0. Then

ΩQ,P (X, Y ) = Q[P (X), P (Y )], X, Y ∈ D(M), (3)

obviously, is skew-symmetric and C∞(M)-bilinear, i.e., a vector valued form. More pre-

cisely, it takes values in Im Q ⊂ D(M). If P : D(M) → D(M) is a projector, i.e.,

P 2 = P , then the associated curvature form of P is defined to be

RP = ΩI−P,P (4)

with I = idD(M).

3 Hyperbolic Monge–Ampère equations

3.1 Monge–Ampère equations

The Monge–Ampère equation is a partial differential equation of the form

N(zxxzyy − z2
xy) + Azxx +Bzxy + Czyy +D = 0 , (5)

where x, y are independent variables, z is a dependent variable, zxx = ∂2z/∂x2, zxy =

∂2z/∂x ∂y, zyy = ∂2z/∂y2, and coefficients N , A, B, C, D are functions of x, y, z,

zx = ∂z/∂x and zy = ∂z/∂y.

We identify equation (5) with the submanifold E of the jet bundle J2τ determined by

the equation

N(rt− s2) + Ar +Bs+ Ct+D = 0 . (6)
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Obviously,

τ2,1(E) = J1τ .

Let θ2 ∈ E, τ2,1(θ2) = θ1, and Fθ1 be the fiber of the projection τ2,1 over the point

θ1 ∈ J1τ . Then the subspace

Smblθ2 E = Tθ2E ∩ Tθ2Fθ1 ,

where Tθ2E is the tangent space to E at θ2 is called the symbol of the equation E at

the point θ2 ∈ E. In terms of standard coordinates, Smblθ2 E is described by the linear

equation

N(tr̃ + rt̃− 2ss̃) + Ar̃ + Bs̃+ Ct̃ = 0, (7)

where r̃, s̃, t̃ are the standard coordinates in Tθ2Fθ1 generated by the standard coordinates

on J2τ .

A point θ2 ∈ E can be elliptic, parabolic, or hyperbolic. To introduce these notions, let

us consider a one-dimensional subspace P ⊂ C(θ1) such that (τ1)∗P �= 0. By definition,

put

l(P ) = { θ2 ∈ Fθ1
∣∣P ⊂ Kθ2 } .

The submanifold l(P ) is called a 1-ray. In terms of standard coordinates, let θ1 =

(x, y, z, p, q), P = 〈v〉 and

v = ζ1
∂

∂x
+ ζ2

∂

∂y
+ μ

∂

∂z
+ η1

∂

∂p
+ η2

∂

∂q
. (8)

Then (τ1)∗P �= 0 means that

(ζ1, ζ2) �= (0, 0) , (9)

v ∈ C(θ1) means that

μ = ζ1p + ζ2q , (10)

and P ⊂ Kθ2 means that {
η1 = ζ1r + ζ2s ,

η2 = ζ1s+ ζ2t ,
(11)

where r, s, t are the standard coordinates of θ2 in the fiber Fθ1 . From system (11), we see

that l(P ) is an affine straight line in Fθ1 . By �θ2(P ) we denote the tangent space Tθ2l(P )

to l(P ) at the point θ2 ∈ l(P ). We call it a 1-ray subspace. In terms of the standard

coordinates r̃, s̃, t̃ in Tθ2Fθ1 , vectors of �θ2(P ) satisfy

{
ζ1r̃ + ζ2s̃ = 0 ,

ζ1s̃+ ζ2t̃ = 0 ,
(12)

Obviously, �θ2(P ) is spanned by the vector

( r̃, s̃, t̃ ) = ( ζ2
2 , −ζ1ζ2, ζ2

1 ) . (13)
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Taking into account (9), we observe that all 1-ray subspaces form the cone

Vθ2 = { r̃t̃− s̃2 = 0 }

in the tangent space Tθ2Fθ1 . This cone is called the cone of singular square forms. Obvi-

ously, the intersection Smblθ2 E∩ Vθ2 is either zero, or a single 1-ray subspace, or two 1-ray

subspaces. Correspondingly, the point θ2 ∈ E is then called elliptic, parabolic or hyper-

bolic. It is not difficult to prove that a contact transformation takes an elliptic, parabolic,

or hyperbolic point to an elliptic, parabolic, or hyperbolic point, respectively. The equa-

tion E is called elliptic, parabolic or hyperbolic if all its points are elliptic, parabolic or

hyperbolic, respectively. In this work, we consider hyperbolic Monge–Ampère equations

only. It is easy to see that E is hyperbolic iff its coefficients satisfy the condition

Δ = B2 − 4AC + 4ND > 0 . (14)

3.2 Skew-orthogonal distributions

Directly from geometry of jet bundles we draw out the interpretation of a hyperbolic

Monge–Ampère equation as a pair of skew-orthogonal two-dimensional distributions in

the Cartan distribution on J1τ . See [12, 14, 19] for an alternative approach.

Let θ1 be an arbitrary point of J1τ . By Qθ1 we denote the union of all one-dimensional

subspaces P of C(θ1) such that τ∗P �= 0 and the 1-ray l(P ) is tangent to E at least at one

point.

Proposition 3.1. Let E be a hyperbolic Monge–Ampère equation. Then Qθ1 is the union

of two-dimensional subspaces D1
E(θ1) and D2

E(θ1) of the Cartan plane C(θ1), so that

(1) C(θ1) = D1
E(θ1) ⊕ D2

E(θ1),

(2) D1
E(θ1) and D2

E(θ1) are skew-orthogonal with respect to the symplectic form dU1 =

dx ∧ dp+ dy ∧ dq on C.

Proof. We prove this proposition for Monge–Ampère equations such that N �= 0. The

proof for N = 0 follows from the fact that every Monge–Ampère equation can be trans-

formed to one with N �= 0 by an appropriate contact transformation.

Let v ∈ Qθ1 and P = 〈v〉. The condition for l(P ) to be tangent to E can be written

in the following way. We can assume that v is of the form (8). Then the vector of

fiber coordinates (ζ2
2 ,−ζ1ζ2, ζ2

1) is tangent to l(P ). Now using (7) we deduce that l(P ) is

tangent to E iff

N(rζ2
1 + 2sζ1ζ2 + tζ2

2 ) + Aζ2
2 − Bζ1ζ2 + Cζ2

1 = 0 .

Taking into account that the coordinates ζi and ηi of v are connected by equations (11),

we reduce this equation to the form

N(ζ1η1 + ζ2η2) + Aζ2
2 − Bζ1ζ2 + Cζ2

1 = 0 . (15)
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Then in view of (9) we assume that ζ1 �= 0 (the case ζ2 �= 0 is analogous). Then from

(11) we get

r =
1

ζ2
1

(η1ζ1 − η2ζ2 + ζ2
2 t) , s =

1

ζ1
(η2 − ζ2t) .

Substituting these expressions for r and s in equation (6) and taking into account equation

(15), we obtain the equation

Nη2
2 + (Aζ2 − Bζ1)η2 −Aζ1η1 −Dζ2

1 = 0. (16)

Solving the system of equations (15) and (16) with respect to η1 and η2, we find

η1 =
(B ∓√

Δ)ζ2 − 2Cζ1
2N

, η2 =
(B ±√

Δ)ζ1 − 2Aζ2
2N

.

Finally, in view of (10), we see that

v = ζ1

(
∂

∂x
+ p

∂

∂z
− C

N

∂

∂p
+
B ±√

Δ

2N

∂

∂q

)

+ ζ2

(
∂

∂y
+ q

∂

∂z
+
B ∓√

Δ

2N

∂

∂p
− A

N

∂

∂q

)
. (17)

This proves that Qθ1 = 〈X1, X2〉 ∪ 〈X3, X4〉 with

X1 =
∂

∂x
+ p

∂

∂z
− C

N

∂

∂p
+
B −√

Δ

2N

∂

∂q
,

X2 =
∂

∂y
+ q

∂

∂z
+
B +

√
Δ

2N

∂

∂p
− A

N

∂

∂q
,

X3 =
∂

∂x
+ p

∂

∂z
− C

N

∂

∂p
+
B +

√
Δ

2N

∂

∂q
,

X4 =
∂

∂y
+ q

∂

∂z
+
B −√

Δ

2N

∂

∂p
− A

N

∂

∂q
.

(18)

Put

D1
E(θ1) = 〈X1, X2〉 , D2

E(θ1) = 〈X3, X4〉 .
Now it is straightforward to verify that subspaces D1

E(θ1) and D2
E(θ1) are skew-orthogonal

and D1
E(θ1) ∩ D2

E(θ1) = {0}. This completes the proof.

From (18) we see that for a Monge–Ampère equation such that N �= 0, the map τ1∗
projects D1

E(θ1) and D2
E(θ1) onto the tangent space to the base of the bundle τ without

degeneration.

It should be noted that if N = 0 (that is, if E is a quasilinear second order PDE),

then the projections τ1∗
(
D1

E(θ1)
)

and τ1∗
(
D2

E(θ1)
)

are one-dimensional.

Thus an arbitrary hyperbolic Monge–Ampère equation generates two 2-dimensional

skew-orthogonal subdistributions of the Cartan distribution C1 in J1τ .
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Proposition 3.2. ([12]) Let E be a hyperbolic Monge–Ampère equation. Then θ2 ∈ E if

and only if one of the following equivalent conditions holds:

(1) Kθ2 ∩ D1
E(θ1) is 1-dimensional,

(2) Kθ2 ∩ D2
E(θ1) is 1-dimensional.

Proof. As in the proof of Proposition 3.1 one can assume that N �= 0.

Let θ2 ∈ E. Then Smblθ2 E ∩ Vθ2 = �θ2(〈v〉) ∪ �θ2(〈ṽ〉), where �θ2(〈v〉) and �θ2(〈ṽ〉)
are different straight lines and, so, vectors v and ṽ are independent. They are skew-

orthogonal, since Kθ2 is a Lagrangian plane in C(θ1) and, by definition of Qθ1 , v, ṽ ∈ Qθ1 .

This means that Kθ2 intersects planes D1
E(θ1) and D2

E(θ1) along 〈v〉 and 〈ṽ〉, respectively.

Let θ2 be a point of J2τ such that Kθ2 intersects the plane D1
E(θ1) along a straight

line, that is, Kθ2 ∩D1
E(θ1) = 〈v〉. By substituting coordinates η1, η2 of the vector v given

by formula (17) into eq. (11), we obtain

(
r +

C

N

)
ζ1 +

(
s− B −√

Δ

2N

)
ζ2 = 0,

(
s− B +

√
Δ

2N

)
ζ1 +

(
r +

A

N

)
ζ2 = 0.

By hypothesis this system is of rank 1 (cf. (9)) and hence its determinant is zero. Now

it remains to note that this is exactly equation (6) and, so, θ2 ∈ E. The case of D2
E(θ1)

differs only by the sign at
√

Δ.

An important consequence of this proposition is that a hyperbolic Monge–Ampère

equation E is completely determined by one of the associated distributions Di
E, i = 1, 2.

Thus, every hyperbolic Monge–Ampère equation E is naturally equivalent to a pair of

2-dimensional, skew-othogonal non-lagrangian subdistributions D1
E, D2

E of the Cartan dis-

tribution C1 in J1τ . In particular, the equivalence problem for hyperbolic Monge–Ampère

equations with respect to contact transformations may be interpreted as the equivalence

problem for pairs of 2-dimensional, skew-orthogonal non-lagrangian subdistributions of

C1 with respect to contact transformations.

3.3 Bundles of Monge–Ampère equations

From now on we put M = J1τ .

3.3.1 Bundles of hyperbolic Monge–Ampère equations

Let E be a Monge–Ampère equation (5). It is identified with the section

SE : ε �→ [
N(ε) : A(ε) : B(ε) : C(ε) : D(ε)

]

of the trivial bundle

ρ : RP4 ×M −→ M ,
(
[v0 : v1 : v2 : v3 : v4], ε

) �→ ε ,
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where RP4 is the 4-dimensional projective space. Obviously, this identification is a bijec-

tion of the set of all Monge–Ampère equations onto the set of all sections of ρ.

Consider the open subset E of the total space of ρ defined by the condition (14), i.e.,

(v2)2 − 4v1v3 + 4v4v0 > 0 .

Clearly, the section SE corresponding to a hyperbolic Monge–Ampère equation E takes

values in E. Thus we can define the bundle of hyperbolic Monge–Ampère equations by

the formula

π = ρ
∣
∣
E
: E −→M ,

(
[v0 : v1 : v2 : v3 : v4], ε

) �→ ε . (19)

We use local coordinates x, y, z, p, q, u1, . . . , u4 in the total space E of π, where

x, y, z, p, q are the standard coordinates on M , while the coordinates u1, . . . , u4 on the

fibres of π are defined as follows. Consider the affine hyperplane in R
5 defined by the

equation v0 = 1. It generates the local chart in E

[1 : v1 : v2 : v3 : v4] �→ (v1, v2, v3, v4) .

Following formulas (18), we introduce the local coordinates u1, . . . , u4 along the fibres of

π by

u1 = −v3 , u2 =
v2 −√

Δ

2
, u3 =

v2 +
√

Δ

2
, u4 = −v1 , (20)

where Δ = (v2)2 − 4v1v3 + 4v4.

These coordinates extend to the standard coordinates x, y, z, p, q, ui, uix, u
i
y, u

i
z, u

i
p, u

i
q,

. . . , uiσ, . . . , on Jkπ, used in this paper until we replace them with a more convenient set

in Sect. 4.3.

3.3.2 The lifting of contact transformations

Let ϕ be a contact transformation defined in M . Then ϕ transforms any Monge–Ampère

equation E to another Monge–Ampère equation Ẽ. In other words, ϕ induces a transfor-

mation of the corresponding sections SE �→ SẼ and, consequently, a diffeomorphism ϕ(0)

of the total space of π such that the diagram

E
ϕ(0)−−−→ E

π

⏐
⏐
�

⏐
⏐
�π

M −−−→
ϕ

M

is commutative (in the domain of ϕ(0)). The diffeomorphism ϕ(0) is called the lifting of

ϕ to the bundle π.

The diffeomorphism ϕ(0), in its turn, can be lifted to a diffeomorphism ϕ(k) of Jkπ by

the formula

ϕ(k)( [S]kε ) =
[
ϕ(0) ◦ S ◦ ϕ−1

]k
ϕ(ε)

.
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Obviously, for any l > m, the diagram

J lπ
ϕ(l)−−−→ J lπ

πl,m

⏐
⏐
�

⏐
⏐
�πl,m

Jmπ −−−→
ϕ(m)

Jmπ

is commutative (in the domains of ϕ(l)). The diffeomorphism ϕ(k) is called the lifting of

ϕ to the jet bundle Jkπ.

3.3.3 The lifting of contact vector fields

Let Z be a contact vector field in M and let ϕt be its flow. Then ϕ
(k)
t defines a vector

field Z(k) in Jkπ. This field is called the lifting of Z to Jkπ. Obviously,

( πl,m )∗
(
Z(l)

)
= Z(m) , ∞ ≥ l > m ≥ −1 ,

where Z(−1) = Z.

It is not difficult to see that the map

Z �−→ Z(k)

is a homomorphism of the Lie algebra of all contact vector fields onM into the Lie algebra

off all vector fields on Jkπ.

The local expression of Z(k) can be found as follows. First, change the notation by

putting x1 = x, x2 = y, x3 = z, x4 = p, x5 = q. Recall that the operator Dj of total

derivative with respect to xj in J∞ is given by the formula

Dj =
∂

∂xj
+

∑

|σ|≥0

4∑

i=1

uiσj
∂

∂uiσ
, j = 1, 2, . . . , 5 ,

The operator of evolution differentiation corresponding to a generating function ψ(Z) =

(ψ1(Z), . . . , ψ4(Z))t is defined by the formula

�ψ(Z) =
∑

|σ|≥0

4∑

i=1

Dσ

(
ψi(Z)

) ∂

∂uiσ
,

where σ = {j1 . . . jr} , Dσ = Dj1 ◦ . . . ◦Djr and ψ(Z) is defined as follows.

Let S be a section of π defined in the domain of Z, θ1 = [S]1x, and x = π1(θ1); then

ψ(Z)(θ1) =
d

dt
(ϕ

(0)
t ◦ S ◦ ϕ−1

t )
∣∣
∣
t=0

(x) .

If

Z =

5∑

i=1

Z i ∂

∂xi
,
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then the lifting Z(∞) is defined by the formula (see [4, 5])

Z(∞) =

5∑

j=1

ZjDj + �ψ(Z) . (21)

It follows from this formula that

Z(k) =

5∑

j=1

ZjDk
j + �k

ψ(Z) , (22)

where

Dk
j =

∂

∂xj
+

∑

0≤|σ|≤k

4∑

i=1

uiσj
∂

∂uiσ
, �k

ψ(Z) =
∑

0≤|σ|≤k

4∑

i=1

Dσ

(
ψi(Z)

) ∂

∂uiσ
.

Let f be the generating function of the contact vector field Z (see formula (2)) and

θ1 = ( x, y, z, p, q, ui, uix, u
i
y, u

i
z, u

i
p, u

i
q ). Then the vector ψ(Zf)(θ1) is (ψ1, . . . , ψ4) with

ψ1 = −u1
zf − u1

pfx − u1
qfy + (−pu1

p − qu1
q + u1)fz

+ (u1
x + pu1

z)fp + (u1
y + qu1

z)fq + fxx + 2pfxz + p2fzz

+ 2u1fxp + (u2 + u3)fxq + 2pu1fzp + p(u2 + u3)fzq

+ (u1)2fpp + (u2 + u3)u1fpq + u2u3fqq,

ψ2 = −u2
zf − u2

pfx − u2
qfy + (−pu2

p − qu2
q + u2)fz

+ (u2
x + pu2

z)fp + (u2
y + qu2

z)fq + fxy + qfxz + pfyz + pqfzz

+ u2fxp + u4fxq + u1fyp + u2fyq + (qu1 + pu2)fzp

+ (qu2 + pu4)fzq + u1u2fpp + (u1u4 + (u2)2)fpq + u2u4fqq,

ψ3 = −u3
zf − u3

pfx − u3
qfy + (−pu3

p − qu3
q + u3)fz

+ (u3
x + pu3

z)fp + (u3
y + qu3

z)fq + fxy + qfxz + pfyz + pqfzz

+ u3fxp + u4fxq + u1fyp + u3fyq + (qu1 + pu3)fzp

+ (qu3 + pu4)fzq + u1u3fpp + (u1u4 + (u3)2)fpq + u3u4fqq,

ψ4 = −u4
zf − u4

pfx − u4
qfy + (−pu4

p − qu4
q + u4)fz

+ (u4
x + pu4

z)fp + (u4
y + qu4

z)fq + fyy + 2qfyz + q2fzz

+ (u2 + u3)fyp + 2u4fyq + q(u2 + u3)fzp + 2qu4fzq

+ u2u3fpp + (u2 + u3)u4fpq + (u4)2fqq.

(23)

3.4 Differential invariants

By Γ we denote the pseudogroup of all contact transformations of M . Its action is lifted

to Jkπ, k ≥ 0, as explained above.
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A function (vector field, differential form, or any other natural geometric object on

Jkπ) is a k th-order differential invariant of Γ if for any ϕ ∈ Γ the lifted transformation ϕ(k)

preserves this object. In this work these differential invariants are also called differential

invariants (of order k) of Monge–Ampère equations or simply differential invariants (of

order k).

Let E be a Monge–Ampère equation, SE the section of π identified with E, and I a

differential invariant of order k. Then the value of I on E is defined as (jkSE)∗(I) and

denoted by IE. If a contact transformation f transforms E to Ẽ, then, obviously, f (k)

transforms IE to IẼ, for any kth order invariant I.

Differential invariants that are functions are also called scalar differential invariants.

By Ak we denote the R-algebra of all scalar differential invariants of order ≤ k. By

identifying Ak with π∗
l,k(Ak) ⊂ Al, ∀k ≤ l, one gets a sequence of inclusions

A0 ⊂ A1 ⊂ . . . ⊂ Ak ⊂ Ak+1 ⊂ . . .

The R-algebra A =
⋃∞
k=0Ak is called the algebra of scalar differential invariants of

Monge–Ampère equations.

Remark 3.3. It is worth noticing that a differential invariant I is completely determined

by its values IE on concrete equations E. This observation will be used below.

Let Z be a contact vector field in M and I a differential invariant of order k. Then

LZ(k)(I) = 0, where L stands for the Lie derivative. This means, in particular, that kth

order scalar invariants are first integrals of all contact vector fields lifted to Jkπ. Obvi-

ously, a scalar differential invariant of order k is constant on any orbit of the action of Γ on

Jkπ. Such an orbit consists, generally, of two components, since contact transformations

need not be orientation preserving (e.g., the famous Legendre transformation x′ = p,

y′ = q, z′ = xp + yq − z, p′ = x, q′ = y is not). In other words, the above-mentioned

first integrals of Z(k) are, generally, invariant only with respect to the unit component of

Γ and will be called almost invariant. Anyway, generic orbits of contact transformations

and of contact vector fields have the same dimension:

Proposition 3.4. (1) Jkπ is an orbit of the action of Γ iff k = 0, 1,

(2) Codimension of a generic orbit of J2π is equal to 2.

(3) Codimension of a generic orbit of J3π is equal to 29.

Proof. Let θk be a generic point of Jkπ and Orbθk
the orbit of the action of Γ on Jkπ

passing through θk. Then codim Orbθk
= dim Jkπ − dim Orbθk

. The dimension of Orbθk

is the dimension of the subspace spanned by all vectors X(k)(θk) which can be calculated

with the help of computer algebra using formulas (22) and (23).

Recall that for an arbitrary smooth function φ of k = 1, 2, . . . arguments and arbitrary

scalar differential invariants I1, . . . , Ik ∈ Ar, the function φ(I1, . . . , Ik) is a scalar differ-

ential invariant belonging to Ar, r = 0, 1, 2, . . .. Now the above proposition immediately
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implies

Corollary 3.5. (1) The algebra of scalar differential invariants A2 is generated by 2

functionally independent invariants.

(2) The algebra of scalar differential invariants A3 is generated by 29 functionally inde-

pendent invariants.

Differential invariants constructed below come mainly form natural geometric con-

structions without saying that these are invariant with respect to the full pseudo-group Γ.

Although not impossible, it is quite challenging task to obtain first integrals of Z(k) ana-

lytically even for small k.

4 Differential invariants on J2π

The next step to be done is explicit construction of differential invariants that generate

A2 as a C∞-closed algebra.

4.1 Base projectors

Let D be a distribution on M . Denote by D(1) the distribution generated by all vector

fields X and [X, Y ], ∀ X, Y ∈ D. Setting D(0) = D, we define D(r+1), r = 0, 1, . . .,

inductively by the formula D(r+1) = (D(r))(1).

Lemma 4.1. For a hyperbolic Monge–Ampère equation E

dim(D1
E)(1) = dim(D2

E)(1) = 3.

Proof. Let ω ∈ Λ1(M) and X, Y ∈ D(M) be such that ω(X) = ω(Y ) = 0. Then, by

applying formula dω(X, Y ) = LX(Y ω)−LY (X ω)− [X, Y ] ω, one easily finds that

ω([X, Y ]) = −dω(X, Y ).

If now ω = U1 and vector fields X, Y ∈ Di
E, i = 1, 2, are independent, then dU1(X, Y ) �= 0

due to hyperbolicity of E. So, the above formula shows that U1([X, Y ]) �= 0, i.e., that

[X, Y ] does not belong to the Cartan distribution on M . So, the fields [X, Y ], X and Y

are linearly independent at every point of M .

Restricting ourselves to the generic case only, we assume from now on that

dim(D1
E)(2) = dim(D2

E)(2) = 5 . (24)

Suppose that vector fieldsX1,X2 generate the distribution D1
E and vector fieldsX3,X4

generate the distribution D2
E. The 3-dimensional generic distributions 〈X1, X2, [X1, X2]〉

and 〈X3, X4, [X3, X4]〉 intersect along a one-dimensional subdistribution D3
E = 〈X1, X2,
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[X1, X2]〉 ∩ 〈X3, X4, [X3, X4]〉. Hence, equation E generates a direct sum decomposition

[12]

T (M) = D1
E ⊕ D2

E ⊕ D3
E. (25)

This decomposition generates six projections

Pi : T (M) → Di
E , i = 1, 2, 3 ,

P
(1)
j : T (M) → Di

E ⊕ D3
E , j = 1, 2 ,

PC : T (M) → C = D1
E ⊕ D2

E .

These projections may be viewed as vector-valued 1-forms. Namely, let X5 be a

vector field generating D3
E. Consider the co-frame {ω1, . . . , ω5} on M dual to the frame

{X1, . . . , X5}, i.e., ωi(Xj) = δij. Then

P1 = ω1 ⊗X1 + ω2 ⊗X2 ,

P2 = ω3 ⊗X3 + ω4 ⊗X4 ,

P3 = ω5 ⊗X5 ,

P
(1)
j = Pj + P3 , j = 1, 2 ,

PC = P1 + P2.

(26)

These vector-valued differential 1-forms are, obviously, differential invariants of E with

respect to contact transformations. Moreover, according to proposition 3.2, the original

equation E is completely determined by each of the projectors P1, P2.

4.2 Coordinate-wise description of base projectors

In order to find local expressions for the above projectors, consider vector fieldsX1, . . . , X4

given by (18) and use the notation (20), i.e.,

X1 =
∂

∂x
+ p

∂

∂z
+ u1 ∂

∂p
+ u2 ∂

∂q
, X2 =

∂

∂y
+ q

∂

∂z
+ u3 ∂

∂p
+ u4 ∂

∂q
,

X3 =
∂

∂x
+ p

∂

∂z
+ u1 ∂

∂p
+ u3 ∂

∂q
, X4 =

∂

∂y
+ q

∂

∂z
+ u2 ∂

∂p
+ u4 ∂

∂q
.

(27)

The remaining field X5 is defined by the relation

X5 = λ1X1 + λ2X2 + κ[X1, X2] = λ3X3 + λ4X4 + χ[X3, X4] . (28)

A simple computation shows that

λ3 = λ1 , λ4 = λ2 , χ = −κ �= 0 ,

with

λ1 =
1

u2 − u3

(
(u2 + u3)y + q(u2 + u3)z + u4(u2 + u3)q

− 2(u4
x + pu4

z + u1u
4
p) − (u2 + u3)u4

q + u3u2
p + u2u3

p

)
,

λ2 =
1

u2 − u3

(
(u2 + u3)x + p(u2 + u3)z + u1(u2 + u3)p

− 2(u1
y + qu1

z + u4u
1
q) − (u2 + u3)u1

p + u2u3
q + u3u2

q

)

(29)
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provided that X5 is normalized by the requirement κ = 1.

Brackets of vector fields X1, . . . , X5 are described by means of the coefficients bijk:

[Xj , Xk] =
5∑

i=1

bijkXi .

Obviously, bijk = −bikj .

4.3 Convenient coordinates on Jkπ

Vector fields Xi, i = 1, . . . , 5 induce vector fields Xi on the bundle J∞π, uniquely defined

by the condition jk(SE)∗Xi = Xi for all sections SE. Thus, X1 = D1 +pD3 +u1D4 +u2D5,

etc., where Di denote the total derivatives, see Sect. 3.3.3.

Differential invariants of hyperbolic Monge–Ampère equations constructed bellow are

described in terms of the quantities Xi1 . . .Xihb
k
ij . So, we need to know all algebraic

relations connecting them, at least for h = 0, 1. To find these efficiently it is convenient

to use a non-standard local chart in Jkπ.

Lemma 4.2. Functions

ũji1...ih = Xi1 . . .Xihu
j, i1 ≤ . . . ≤ ih, h ≤ k. (30)

together with functions xi, uj constitute a local chart on Jkπ. Moreover, the standard jet

coordinates on Jkπ are rational functions of these coordinates.

Proof. For k = 2 the assertion is verified directly. For k > 2 one can express the stan-

dard jet coordinates uji1...ik = Di1...iku
j in terms of coordinates (30) by making use of

the following obvious facts. First, fields Di are linear combinations of fields Xi with

coefficients in C∞(J2π). Second, the coefficients bji1i2 are functions on J2π. Third,

Xi2Xi1f = −bji1i2Xjf + Xi1Xi2f for every function f ∈ C∞(Jkπ), k ≥ 2.

Omitting explicit expression of quantities bkij in terms of coordinates ũji1...ih , we only

remark that they are essentially simpler than those in terms of the standard jet coordi-

nates uji1...ih. Then it is easy to find the following complete system of functional relations

among quantities bkij :
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b134 = 0, b234 = 0,

b312 = 0, b412 = 0, b512 = 1,

b313 = −b113, b413 = −b213, b513 = 0,

b323 = −b123, b423 = −b223, b523 = 0,

b314 = −b114, b414 = −b214, b514 = 0,

b324 = −b124, b424 = −b224, b524 = 0,

b334 = −b112, b434 = −b212, b534 = −1,

b515 = −b214 − b113, b525 = −b224 − b123,

b535 = −b113 − b223, b545 = −b224 − b114,

b445 = −b335 + b225 + b115.

(31)

Naturally, these relations reflect basic geometric properties of fields X1, . . . , X5. For

instance, the relation b312 = b412 = 0 is implied by the fact that [X1, X2] belongs to the

distribution (D1
E)

(1) generated by X1, X2 and X5, etc.

Henceforth we shall simplify the notation by using Xi for Xi.

4.4 Curvatures

Using formulas (3), (4) and the direct sum decomposition (25), it is easy to compute the

curvature forms of projectors P1, P2, P
(1)
1 , P

(1)
2 , PC, which are

R1 = ω1 ∧ ω2 ⊗X5 ,

R2 = −ω3 ∧ ω4 ⊗X5 ,

R1
1 = −(b315ω

1 + b325ω
2) ∧ ω5 ⊗X3 − (b415ω

1 + b425ω
2) ∧ ω5 ⊗X4 ,

R1
2 = −(b135ω

3 + b145ω
4) ∧ ω5 ⊗X1 − (b235ω

3 + b245ω
4) ∧ ω5 ⊗X2 ,

R = R1 + R2 ,

(32)

respectively. It is clear that these curvature forms are differential invariants of E.

Frölicher–Nijenhuis brackets of base projectors give new invariant vector-valued forms.

These, however, turn out to be linear combinations of curvature forms. More exactly, a

direct computation, which is omitted, shows that

[[P1,P2]] = 1
2
(−[[P1,P1]] − [[P2,P2]] + [[P3,P3]]) ,

[[P1,P3]] = 1
2
(−[[P1,P1]] + [[P2,P2]] − [[P3,P3]]) ,

[[P2,P3]] = 1
2
([[P1,P1]] − [[P2,P2]] − [[P3,P3]])
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and

[[P1,P1]] = −2(R1
2 + R1), [[P2,P2]] = −2(R1

1 + R2) ,

[[P3,P3]] = −2(R1 + R2).

4.5 Scalar invariants on J2π

The following three invariant 5-forms with values in D3
E = 〈X5〉:

1
2

(
R1

2 R1

) (
R1

2 R1

)
= Λ1 ω

1 ∧ . . . ∧ ω5 ⊗X5 ,
1
2

(
R1

1 R2

) (
R1

1 R2

)
= Λ2 ω

1 ∧ . . . ∧ ω5 ⊗X5 ,(
R1

2 R1

) (
R1

1 R2

)
= Λ12 ω

1 ∧ . . . ∧ ω5 ⊗X5 ,

(33)

with
Λ1 = b235b

1
45 − b135b

2
45, Λ2 = b415b

3
25 − b315b

4
25,

Λ12 = b315b
1
35 + b415b

1
45 + b325b

2
35 + b425b

2
45 .

(34)

are proportional. Therefore, the corresponding proportionality factors are scalar differ-

ential invariants. In particular, such are

I1 = Λ12/Λ1 ,

I2 = Λ12/Λ2 .
(35)

Below it will be shown that Λ1,Λ2 are nowhere zero.

Theorem 4.3. The algebra of scalar differential invariants on J2π is generated by the

invariants I1 and I2.

Proof. In view of Corollary 3.5, it is sufficient to show that I1 and I2 are functionally

independent (on J2π). But this is straightforward from the complete list of functional

relations (31).

Coefficients Λσ, σ = 1, 2, 12, introduced in (34) have a geometrical meaning explained

below. Fix a generator W = fX5 in D3
E and consider maps

�W
1 : D2 → D1, �W

2 : D1 → D2,

defined by formulas

�W
1 (Z2) = P1([Z2,W ]), �W

2 (Z1) = P2([Z1,W ]),

with Z1 ∈ D1, Z2 ∈ D2. Since P1(D
2
E) = P2(D

1
E) = 0 both �W

1 and �W
1 are C∞(M)-

linear. This is seen as well from their local expressions

�W
1 = fbij5 ω

j ⊗Xi, i = 1, 2, j = 3, 4,

�W
2 = fbij5 ω

j ⊗Xi, i = 3, 4, j = 1, 2.
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Consider also 2-forms ρWi : Di × Di → R, i = 1, 2, defined by

ρWi (Ui, Vi)W = Ri(Ui, Vi), Ui, Vi ∈ Di
E. (36)

Then, obviously, ρW1 = (1/f)ω1∧ω2, ρW2 = −(1/f)ω3∧ω4, so that both are volume forms

of D1 and D2, respectively. Moreover, we have

(�W
1 )∗(ρW1 ) = f 2Λ2ρ

W
2 ,

(�W
2 )∗(ρW2 ) = f 2Λ1ρ

W
1 ,

tr(�W
1 ◦ �W

2 ) = tr(�W
2 ◦ �W

1 ) = f 2Λ12.

(37)

Proposition 4.4. If E is generic, then functions Λ1, Λ2 are nowhere zero.

Proof. By genericity condition (24), �W
1 and �W

2 are surjective, hence Λ1,Λ2 are nonzero.

4.5.1

Now consider operators ∇W
1 = �W

1 ◦ �W
2 and ∇W

2 = �W
2 ◦ �W

1 acting on D1 and D2,

respectively. It follows from (37) that

λ2 − f 2Λ12λ+ f 4Λ1Λ2 (38)

is the characteristic polynomial for each of them. Another peculiarity of the situation is

that �W
1 send eigenvectors of ∇W

2 to that of ∇W
1 and similarly for �W

1 .

The discriminant of polynomial (38) is

f 4Λ1Λ2(I
1I2 − 4).

Its sign coincides, obviously, with the sign of

I1I2(I1I2 − 4) .

This proves that generic hyperbolic Monge–Ampère equations are subdivided into three

subclasses as follows:

(1) subclass “h”: the operator ∇W
i has two different real eigenfunctions

⇔ I1I2(I1I2 − 4) > 0,

(2) subclass “p”: the operator ∇i has a unique real eigenfunction

⇔ I1I2(I1I2 − 4) = 0,

(3) subclass “e”: the operator ∇i has no real eigenfunctions

⇔ I1I2(I1I2 − 4) < 0.

4.5.2 Some almost invariants

The previous considerations lead to an almost invariant choice of generator W = fX5 in

D3
E. Namely, define functions ΛW

i , i = 1, 2, by relations

(�W
1 )∗(ρW1 ) = ΛW

2 ρ
W
2 , (�W

2 )∗(ρW2 ) = ΛW
1 ρ

W
1 .
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Obviously, ΛW
i = f 2Λi. This shows that, up to sign, vector fields

Wi =
1

√
|ΛW

i |W, i = 1, 2,

do not depend on the choice of W . In particular, ΛX5
i = Λi, so that

Wi =
1

√|Λi|
X5, i = 1, 2.

By duality, 1-forms

ϑi =
√

|Λi|ω5, i = 1, 2,

are almost invariant as well.

It is not difficult to construct further almost invariant forms. For instance, the forms

ϑij = Ri ϑj , i = 1, 2,

are manifestly almost invariant and have the following local expressions:

ϑ1j =
√
|Λj|ω1 ∧ ω2 ϑ2j =

√
|Λj|ω3 ∧ ω4 .

The products

ρj = (−sign Λj)ϑ1j ∧ ϑ2j = Λj ω
1 ∧ ω2 ∧ ω3 ∧ ω4, j = 1, 2, (39)

which are volume forms on the Cartan distribution D1
E,⊕D2

E, are, obviously, fully invari-

ant. This is a very simple example on how an invariant can be constructed from almost

invariants. Forms ρj can be described in a manifestly invariant way as follows:

ρ1 = 1
2

〈
(R1

2 R1) (R1
2 R1)

〉
, ρ2 = 1

2

〈
(R1

1 R2) (R1
1 R2)

〉

where 〈 · 〉 stands for the self-contraction. Note that the form

ρ12 = Ijρj = Λ12 ω
1 ∧ ω2 ∧ ω3 ∧ ω4 (40)

is invariant too.

Similarly, one can construct many other invariant forms. Some of them are :

〈
R1

2 R1

〉
= −(b135ω

3 + b145ω
4) ∧ ω2 + (b235ω

3 + b245ω
4) ∧ ω1,

〈
R1

1 R2

〉
= (b315ω

1 + b325ω
2) ∧ ω4 − (b415ω

1 + b425ω
2) ∧ ω3,

R1
1

〈
R2 R1

1

〉
= 2Λ2 ω

1 ∧ ω2 ∧ ω5,

R1
2

〈
R1

2 R1

〉
= 2Λ1 ω

3 ∧ ω4 ∧ ω5.

(41)

Now it is easy to construct almost invariant volume forms :

ϑj ∧ ρj = |Λj|3/2 ω1 ∧ ω2 ∧ ω3 ∧ ω4 ∧ ω5, j = 1, 2. (42)
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5 Differential invariants on J3π

Since ωk(Xl) = const, namely, δkl, we have

dωk(Xi, Xj) = −ωk([Xi, Xj]) .

(see the proof of lemma 4.1). This implies the useful formula

dωk = −
∑

i<j

bkij ω
i ∧ ωj . (43)

5.1 The complete parallelism

First, note that invariant differential 1-forms dI1 and dI2 live on J3π. This leads us

immediately to another set of invariant differential 1-forms on J3π:

Ω1 = P1 dI1 = X1(I
1)ω1 +X2(I

1)ω2 ,

Ω2 = P1 dI2 = X1(I
2)ω1 +X2(I

2)ω2 ,

Ω3 = P2 dI1 = X3(I
1)ω3 +X4(I

1)ω4 ,

Ω4 = P2 dI2 = X3(I
2)ω3 +X4(I

2)ω4 ,

Ω5
1 = P3 dI1 = X5(I

1)ω5 , Ω5
2 = P3 dI2 = X5(I

2)ω5 .

(44)

Supposing that E is a generic equation, we henceforth assume that

X5(I
1) �= 0 , X5(I

2) �= 0 , (45)

and

Δ1 =

∣
∣
∣∣
∣
∣
∣

X1(I
1) X2(I

1)

X1(I
2) X2(I

2)

∣
∣
∣∣
∣
∣
∣
�= 0 , Δ2 =

∣
∣
∣∣
∣
∣
∣

X3(I
1) X4(I

1)

X3(I
2) X4(I

2)

∣
∣
∣∣
∣
∣
∣
�= 0 . (46)

This means that two sets of forms {Ω1, . . . ,Ω4,Ω5
1} and {Ω1, . . . ,Ω4, Ω5

2} are invariant

coframes onM (we omit the subscript E according to Remark 3.3). Each of these coframes

determines an invariant complete parallelism on M .

The frames {Y1, . . ., Y4, Y
1
5 } and {Y1, . . . , Y4, Y

2
5 } dual to the above constructed

coframes are obviously invariant. An explicit description of them is :

Y1 =
1

Δ1

(
X2(I

2)X1 −X1(I
2)X2

)
,

Y2 =
1

Δ1

(−X2(I
1)X1 +X1(I

1)X2

)
,

Y3 =
1

Δ2

(
X4(I

2)X3 −X3(I
2)X4

)
,

Y4 =
1

Δ2

(−X4(I
1)X3 +X3(I

1)X4

)
,

Y 1
5 =

1

X5(I1)
X5 , Y 2

5 =
1

X5(I2)
X5 .

(47)
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5.2 More scalar invariants on J3π

Among numerous invariants constructed previously there are functions, (vector-valued)

differential forms, and vector fields. Further invariants can by obtained just by applying

various operations of tensor algebra, Frölicher–Nijenhuis brackets, etc., to these objects.

Moreover, components of an invariant object with respect to an invariant basis are scalar

differential invariants. These simple general tricks are rather efficient and were already

used in constructing differential invariants on J2π. As for J3π we shall proceed along

these lines as well.

The invariant 1-forms Ω5
1 and Ω5

2 are proportional. So, the proportionality factor

Ĩ3 =
X5(I

1)

X5(I2)
(48)

is a scalar differential invariant on J3π.

Consider now invariant 2-forms on J3π:

R1 dI1 = I6Ω1 ∧ Ω2 ,

R1 dI2 = I7Ω1 ∧ Ω2 ,

R2 dI1 = I8Ω3 ∧ Ω4 ,

R2 dI2 = I9Ω3 ∧ Ω4 ,

R1
1 dI1 = I10Ω1 ∧ Ω5

1 + I11Ω2 ∧ Ω5
1 ,

R1
1 dI2 = I12Ω1 ∧ Ω5

1 + I13Ω2 ∧ Ω5
1 ,

R1
2 dI1 = I14Ω3 ∧ Ω5

1 + I15Ω4 ∧ Ω5
1 ,

R1
2 dI2 = I16Ω3 ∧ Ω5

1 + I17Ω4 ∧ Ω5
1 .

(49)

Their components I6, . . . , I17 with respect to the base Ω1, . . . ,Ω5 are further scalar

differential invariants on J3π. The simplest among them are I6 = Δ1/X5(I
1) and I8 =

Δ2/X5(I
1).

In the same manner one easily find numerous non-scalar differential invariants on

J3π. For instance, such are 3-forms [[Pi,Rj]] or [[Pi,R
1
j ]], 4-forms [[Pi, (R

1
j R1

k)]], 5-forms

[[Pi,R
1
j ]] [[Pk,R

1
l ]], etc.

5.3 Better manageable invariants

From the above said one can see that there are sufficient resources for constructing differ-

ential invariants and the main problem becomes to select functionally independent ones

in the simplest possible way. From technical point of view this forces us to look for man-

ageable invariants, for instance, those that have local expression as simple as possible.

In the considered context a help comes from almost invariant objects as it is illustrated

below.

In view of (39), (40) and (43), for σ = 1, 2, 12 we have the invariant 5-forms

dρσ = d(Λσ ω
1 ∧ ω2 ∧ ω3 ∧ ω4)

=
(
X5(Λσ) + ΛσB

)
ω1 ∧ ω2 ∧ ω3 ∧ ω4 ∧ ω5,

(50)
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where B = b115 + b225 + b335 + b445 = 2(b115 + b225) = 2(b335 + b445) according to (31).

By comparing these 5-forms with (42) we obtain almost scalar invariants

Ijσ =
X5(Λσ) + ΛσB

|Λj|3/2 , σ = 1, 2, 12, j = 1, 2, (51)

on J3π which are better manageable in comparison to those constructed in the previous

subsection. The squares (Ijσ)
2 are, obviously, full scalar invariants. Apart from the

obvious relation (I1
σ/I

2
σ)

2 = (I1/I2)3 they are functionally independent. Some of the

earlier constructed invariants can be expressed in terms of Ijσ’s, e.g.,

X5(I
1)

X5(I2)
=

(Ij12 − Ij1I
1)I1

(Ij12 − Ij2I
2)I2

, j = 1, 2.

6 The equivalence problem

So far we obtained two independent second-order scalar invariants I1, I2 (see (35)) and

a number of third-order invariants. Put (see (51))

I3 = (I1
1 )2, I4 = (I1

2 )2, I5 = (I1
12)

2,

The following statement can be checked by a direct computer-supported calculation in

coordinates (30):

Theorem 6.1. For a generic hyperbolic Monge-Ampére equation E values IjE’s of invari-

ants Ij’s, j = 1, ..., 5, on E are functionally independent on the base M .

Of course, this choice of basic scalar invariants is not unique. For instance, functions

I1
E, I

2
E, Ĩ

3
E, I

6
E, I

8
E (see (48), (49)) are functionally independent on E as well. However, this

and other reasonable choices are “less manageable” with respect to those made in the

above theorem. Unfortunately, this fact is not clearly seen from the above exposition,

since we were forced to skip technical details of computations.

According to“the principle of n invariants” [24], any quintuple of functionally indepen-

dent scalar invariants gives a solution of the equivalence problem for generic hyperbolic

Monge–Ampère equations. Theorem 6.1 guarantees existence of such a one, namely,

I1, . . . , I5.

More exactly, let E be a generic hyperbolic Monge–Ampère equation considered as

an unordered pair of 2-dimensional, skew-orthogonal subdistributions D1
E and D2

E of the

Cartan distribution on M , that is E = (〈X1,E, X2,E〉, 〈X3,E, X4,E〉) , where vector fields

X1, . . . , X4 are defined by (18).

Observe now that the distributions D1
E = 〈X1,E, X2,E〉 and D2

E = 〈X3,E, X4,E〉 are

determined uniquely by values on E of invariant bivectors W1 = Y1∧Y2 and W2 = Y3∧Y4

with fields Yi defined in (47), respectively. Obviously,

W1 =
1

Δ1
X1 ∧X2, W2 =

1

Δ2
X3 ∧X4.
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Since I1
E, . . . , I

5
E are functionally independent, they form an invariant chart in M denoted

by IE. Observe that Yi+ε(I
j) = δij for i, j = 1, 2, ε = 0, 2. So,

Yi+ε = δij
∂

∂Ij
+ Y α

i+ε

∂

∂Iα

with i, j = 1, 2, ε = 0, 2, α = 3, 4, 5. Functions ναk = Y α
k (I1, ..., I5) are, obviously,

differential invariants. They determine completely vector fields Y1, ..., Y4 and, so, the

distributions Di
E, i = 1, 2. Consider now functions ναk,E = Y α

k,E ◦ I−1
E . They are functions

in a certain domain of the arithmetic vector space R
5 = {(z1, ..., z5)} and will be called

normal parameters of the equation E.

Theorem 6.2. Let E and Ẽ be generic hyperbolic Monge–Ampère equations. Then E and

Ẽ are (locally) equivalent iff their normal parameters coincide, i.e., iff ναk,E(z1, ..., z5) ≡
να
k,Ẽ

(z1, ..., z5), k = 1, ..., 4, α = 3, 4, 5.

Proof. Let IE = (I1
E, . . . , I

5
E) and IẼ = (I1

Ẽ
, . . . , I5

Ẽ
) be invariant charts for E and Ẽ,

respectively.

The “if” part of the theorem is obvious. Now assume that normal parameters of E

and Ẽ coincide. Then the diffeomorphism f = I−1

Ẽ
◦ IE is such that I iE = f ∗(I i

Ẽ
) and,

consequently, Y α
k,E = f ∗(Y α

k,Ẽ
). This shows that f sends vector fields Yk,E to vector fields

Yk,Ẽ, k = 1, ..., 4, and, therefore, Di
E to Di

Ẽ
, i = 1, 2. Since C = D1

E⊕D2
E and C̃ = D1

Ẽ
⊕D2

Ẽ

the diffeomorphism f is automatically contact.

Remark 6.3. A system of functions fαk in a domain of R
5 can be realized as the system

of normal parameters ναk,E of a hyperbolic Monge-Ampère equation E iff it is a solution of

a system of partial differential equations (see [1, 24]) and the algebra of differential invari-

ants of Monge-Ampère equations is then interpreted to be the smooth function algebra

on the infinite prolongation of this system. According to [1, 24]), it is not difficult to

describe explicitly this system but the result is rather cumbersome and not very instruc-

tive. This is why we do not report it here. More satisfactory results in this direction will

be presented in a separate paper. Nevertheless, it is worth mentioning that, in principle,

the differential invariants constructed above allow a solution of the classification problem

for generic hyperbolic Monge-Ampère equations.

There are alternative equivalent formulations of the classification theorem. For in-

stance, one of them is as follows.

Consider the 1-forms Ω1, . . . ,Ω5, defining the complete parallelism on M . In the

invariant coordinate system I1
E, . . . , I

5
E, these forms are described in the terms of functions

Ωi
j(I

1
E, . . . , I

5
E):

Ωi =

5∑

j=1

Ωi
j(I

1
E, . . . , I

5
E)dIjE , i = 1, . . . , 5 .

Theorem 6.4. The (local) equivalence class of a generic equation E with respect to con-
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tact transformations is uniquely determined by the family of functions Ωi
j(I

1
E, . . . , I

5
E),

i = 1, . . . , 5 .

Proof. Let Ẽ be another generic Monge–Ampère equation such that there exists a contact

transformation transforming it to E. Then, obviously, the functions Ωi
j(I

1
E, . . . , I

5
E) and

Ω̃i
j(I

1
Ẽ
, . . . , I5

Ẽ
) coincide for all i and j.

Let E, Ẽ be Monge–Ampère equations such that for all i and j the functions Ωi
j(I

1
E, . . . , I

5
E)

and Ω̃i
j(I

1
Ẽ
, . . . , I5

Ẽ
) coincide. Let IE = (I1

E, . . . , I
5
E) and IẼ = (I1

Ẽ
, . . . , I5

Ẽ
) be invariant co-

ordinate systems in M for E and Ẽ respectively. Then I−1

Ẽ
◦ IE is a locally defined

diffeomorphism M → M . This diffeomorphism is a contact transformation because it

transforms Ωi =
∑5

j=1 Ωi
j(I

1
E, . . . , I

5
E)dIjE to

∑5
j=1 Ω̃i

j(I
1
Ẽ
, . . . , I5

Ẽ
)dIj

Ẽ
= Ω̃i, i = 1, . . . , 5,

and, in particular, the contact form Ω5 to the contact form Ω̃5. By obvious reasons it also

transforms the pair of distributions (D1
E,D

2
E) to the pair (D1

Ẽ
,D2

Ẽ
) and hence E to Ẽ. �

7 Examples

Examples discussed in this section aim to illustrate the character and complexity of

problems related with actual computations and use of differential invariants. Henceforth

invariants I i are denoted by Ii.

Example 7.1. Consider the equation

1
4
(zxxzyy − z2

xy) + y2zxx − 2xyzxy + x2zyy + x2y2z2 = 0.

The first two invariants are I1 = zn+/d, I2 = zn−/d, where

n± = 2(z + 3y4 ∓ 2)x2z2
x − (z + 12x2y2)xyzxzy + 2(z + 3x4 ± 2)y2z2

y

+ (z2 + 8x2y2z + 4y4z ± 4z ± 16x2y2 ± 16y4 − 12)xzx

+ (z2 + 4x4z + 8x2y2z ∓ 4z ∓ 16x4 ∓ 16x2y2 − 12)yzy

+ 2z3 + 36x4y4z3 + 6y4z2 − 4x2y2z2 + 6x4z2

− 8z ∓ 16x4z ± 16y4z + 8x4 + 16x2y2 + 8y4,

d = 4(z2 + 3y4z + 4)x2z2
x − 2(z2 + 12x2y2z − 16)xyzxzy

+ 4(z2 + 3x4z + 4)y2z2
y + 2(z2 + 8x2y2z + 4y4z + 20)xzzx

+ 2(z2 + 4x4z + 8x2y2z + 20)yzzy + 4(18x4y4z3 + z3

+ 3x4z2 − 2x2y2z2 + 3y4z2 + 12z + 4x4 + 8x2y2 + 4y4)z.

The invariants I3, I4, I5 are large fractions whose non-reducible numerators are polyno-

mials of order three in zx, zy, five in z, and six in x, y. Invariants Is, s > 5, are even more

cumbersome.

Computation shows that the jacobian ∂(I1, I2, I3, I4, I5)/∂(x, y, z, zx, zy) is nonzero,

hence the first five invariants are functionally independent and can be chosen to be local

coordinates on J1(τ). Although an explicit inversion is rather hopeless, one can still find
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algorithmically the relations connecting principal invariants I1, . . . , I5 and higher Ik at

least in principle. This kind of procedure is outlined in Example 7.2 below.

Example 7.2. Put ζ = zx + zy + e and consider the family of equations

(4zxzy + ζ2)(zxxzyy − z2
xy) + 4ζ2(zyzxx + zxzyy + ζ2) = 0. (52)

depending on parameter e. Assuming that e �= 0, we have

I1 = 2
(zx + zy)

2 + 3e(zx + zy) + 4e2

5ezx + ezy + 4e2
,

I2 = 2
(zx + zy)

2 + 3e(zx + zy) + 4e2

ezx + 5ezy + 4e2
,

I3 = 23/2
7z2

x + 6zxzy − z2
y + 33ezx + 5ezy + 21e2

e1/2(5zx + zy + 4e)3/2
,

I4 = 23/2
−z2

x + 6zxzy + 7z2
y + 5ezx + 33ezy + 21e2

e1/2(5zx + zy + 4e)3/2
,

I5 = 25/2 (zx + zy)
3 + 7e(zx + zy)

2 + 17e2(zx + zy) + 21e3

e3/2(5zx + zy + 4e)3/2
.

All invariants are independent of x, y, z, reflecting the fact that x �→ x + t1, y �→ y + t2,

z �→ z+ t3 are symmetries of equation (52). One easily checks that I1, I2 are functionally

independent, but it is still not straightforward to express zx, zy in terms of I1, I2 explicitly.

To establish the dependence of Is, s > 3, on I1, I2, we observe that for every s there

exists a polynomial Ps(zx, zy, Is) such that Is is a solution of the equation Ps = 0. Then

what we need is eliminating zx, zy from the system

I1 − 2
(zx + zy)

2 + 3e(zx + zy) + 4e2

5ezx + ezy + 4e2
= 0,

I2 − 2
(zx + zy)

2 + 3e(zx + zy) + 4e2

ezx + 5ezy + 4e2
= 0,

Ps(zx, zy, Is) = 0.

To this end, it suffices to compute the Gröbner basis of the last system with respect to

an “elimination ordering” of monomials. With the help of the Groebner package of Maple

10 the following quadratic equation for I3,

0 = 4096 I6
2I

2
3 − I3

2 (729 I3
1I

3
2 − 1971 I3

1I
2
2 + 20493 I2

1I
3
2

+ 3563 I3
1I2 − 51114 I2

1I
2
2 + 183915 I1I

3
2

+ 3951 I3
1 − 52723 I2

1I2 + 45517 I1I
2
2 + 102191 I3

2)I3

+ (27 I3
1I

2
2 − 81 I2

1I
3
2 − 32 I3

1I2 + 426 I2
1I

2
2 − 1206 I1I

3
2

− 44 I3
1 + 270 I2

1I2 − 800 I1I
2
2 − 1114 I3

2)
2

can be found rather quickly as well as similar quadratic equations for I4, I5. The assump-
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tions of Sect. 5.1 are satisfied as well. In particular, Δ1,Δ2 are nonzero since

Δ1 = Δ2 = −128
(zx + zy)(3zx + 3zy + 8e)(zx + zy + e)4

e2(zx + 5zy + 4e)2(5zx + zy + 4e)2

× z2
x + 2zxzy + z2

y + 3ezx + 3ezy + 4e2

z2
x + 6zxzy + z2

y + 2ezx + 2ezy + e2
.

This enables us to compute the higher invariants. For instance, I6 is solution of the

quadratic equation

0 = −16I2
1 (27I4

1I2 − 27I3
1I

2
2 + 22I4

1 − 56I3
1I2 − 2I2

1I
2
2

+ 8I2
1I2 − 42I3

1 + 50I1I
2
2 + 28I2

1 + 56I1I2 + 28I2
2 )I2

6

+ I1(I1I2 − I1 − I2)(9I1I2 + 7I1 + 7I2)(3I
3
1I2 − 3I2

1I
2
2

− 26I3
1 − 34I2

1I2 − 8I1I
2
2 + 18I2

1 + 36I1I2 + 18I2
2 )I6

+ (I1 + I2)
2(I1I2 − I1 − I2)(9I1I2 + 7I1 + 7I2)(I1I2 − 2I1 − 2I2)

2.

Although every invariant computed so far depends on e, its expression in terms of I1, I2
does not. This suggests the idea that the parameter e is removable. And indeed, after

substitution z �→ ez equation (52) becomes equivalent to itself with e = 1. Thus, the

family of equations (52) consists of a continuum of generic members with e �= 0, which

are all mutually equivalent, and a single non-generic member with e = 0 (in which case

Λ1 = Λ2 = 0).

Example 7.3. Consider the family of equations

1
4
(zxxzyy − z2

xy) + y2zxx − 2xyzxy + x2zyy + ex2y2 = 0,

depending on a real parameter e �= 4. Then the first five invariants are constants

I1 = I2 = 2
e+ 12

e− 4
,

I3 = I4 =
800

e− 4
,

I5 = 3200
(e+ 12)2

(e− 4)3
,

while the higher invariants Is are undefined.

The equation belongs to the subclass “h”, or “p”, or “e” (see 4.5.1) if e > −4 or e = −4

or e < −4, respectively.
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